Search results for "Quantum Decoherence"

showing 10 items of 159 documents

Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment

2018

This paper is devoted to justification of quantum-like models of the process of decision making based on the theory of open quantum systems, i.e. decision making is considered as decoherence. This process is modeled as interaction of a decision maker, Alice, with a mental (information) environment ${\cal R}$ surrounding her. Such an interaction generates "dissipation of uncertainty" from Alice's belief-state $\rho(t)$ into ${\cal R}$ and asymptotic stabilization of $\rho(t)$ to a steady belief-state. The latter is treated as the decision state. Mathematically the problem under study is about finding constraints on ${\cal R}$ guaranteeing such stabilization. We found a partial solution of th…

0301 basic medicinePersuasionClass (set theory)Psychology (all)Quantum decoherenceDissipation of uncertaintyProcess (engineering)Computer sciencemedia_common.quotation_subjectBF050105 experimental psychology03 medical and health sciences0501 psychology and cognitive sciencesQuantum field theoryQAQuantumGeneral Psychologymedia_commonQuantum-like modelVoters’ behaviorApplied Mathematics05 social sciencesState (functional analysis)16. Peace & justiceMental environmentMental (information) environment030104 developmental biologyQuantitative Biology - Neurons and CognitionOpen quantum systemFOS: Biological sciencesConsumers’ persuasionNeurons and Cognition (q-bio.NC)Decision makingMathematical economics
researchProduct

Quantum logic gates by adiabatic passage

2006

International audience; We present adiabatic passage techniques for the realisation of one and two-qubit quantum Gates. These methods use evolution along dark-states of the system, avoiding decoherence effects such as spontaneous emission. The advantage of these methods is their robustness: they are insensitive to the fluctuations of the parameters and to partial knowledge of the system.

Adiabatic circuitPhysics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Quantum decoherenceGeneral Physics and AstronomyAdiabatic quantum computation01 natural sciencesQuantum logicQuantum gate[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Robustness (computer science)Quantum mechanics0103 physical sciencesSpontaneous emission010306 general physicsAdiabatic process
researchProduct

Ultrafast dynamics of halogens in rare gas solids

2007

We perform time resolved pump-probe spectroscopy on small halogen molecules ClF, Cl2, Br2, and I2 embedded in rare gas solids (RGS). We find that dissociation, angular depolarization, and the decoherence of the molecule is strongly influenced by the cage structure. The well ordered crystalline environment facilitates the modelling of the experimental angular distribution of the molecular axis after the collision with the rare gas cage. The observation of many subsequent vibrational wave packet oscillations allows the construction of anharmonic potentials and indicate a long vibrational coherence time. We control the vibrational wave packet revivals, thereby gaining information about the vib…

Coherence timeQuantum decoherenceChemistryPhononWave packetAnalytical chemistryGeneral Physics and AstronomyMolecular electronicsMolecular electronic transitionExcited statePhysics::Atomic and Molecular ClustersPhysical and Theoretical ChemistryAtomic physicsCoherence (physics)Phys. Chem. Chem. Phys.
researchProduct

Uniform analytic description of dephasing effects in two-state transitions

2007

We describe the effect of pure dephasing upon the time-dependent dynamics of two-state quantum systems in the framework of a Lindblad equation for the time evolution of the density matrix. A uniform approximate formula is derived, which modifies the corresponding lossless transition probability by an exponential factor containing the dephasing rate and the interaction parameters. This formula is asymptotically exact in both the diabatic and adiabatic limits; comparison with numerical results shows that it is highly accurate also in the intermediate range. Several two-state models are considered in more detail, including the Landau-Zener, Rosen-Zener, Allen-Eberly, and Demkov-Kunike models, …

Condensed Matter::Quantum GasesPhysicsDensity matrixQuantum decoherenceLindblad equationDephasingDiabaticTime evolutionCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSchrödinger equationsymbols.namesakeQuantum mechanics0103 physical sciencessymbols010306 general physicsAdiabatic processPhysical Review A
researchProduct

Decoherence of the Exciton and Decay of the Excitonic Polaron in Quantum Dots

2005

Bulk-phonon mechanisms of decoherence of an exciton confined in a quantum dot (QD) are considered in order to establish time limitations for the coherent control of the exciton with relevance to its application in quantum information processing. These are the formation and decay of the excitonic polaron. The estimations of characteristic dephasing times for the InAs/GaAs QD are discussed.

Condensed Matter::Quantum GasesPhysicsQuantum decoherenceCondensed matter physicsCondensed Matter::OtherDephasingExcitonCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsPolaronAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceCoherent controlQuantum dotQuantum mechanicsQuantum dissipationMathematical PhysicsBiexcitonPhysica Scripta
researchProduct

Asymptotic entanglement of two atoms in a squeezed light field

2011

The dynamics of entanglement between two - level atoms interacting with a common squeezed reservoir is investigated. It is shown that for spatially separated atoms there is a unique asymptotic state depending on the distance between the atoms and the atom - photons detuning. In the regime of strong correlations there is a one - parameter family of asymptotic steady - states depending on initial conditions. In contrast to the thermal reservoir both types of asymptotic states can be entangled. We calculate the amount of entanglement in the system in terms of concurrence.

Condensed Matter::Quantum GasesPhysicsQuantum opticsQuantum PhysicsQuantum decoherenceField (physics)Thermal reservoirFOS: Physical sciencesConcurrenceQuantum PhysicsQuantum entanglementSquashed entanglementAtomic and Molecular Physics and OpticsQuantum mechanicsPhysics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)Squeezed coherent statePhysical Review A
researchProduct

Effective hamiltonian approach to the non-Markovian dynamics in a spin-bath

2010

We investigate the dynamics of a central spin that is coupled to a bath of spins through a non-uniform distribution of coupling constants. Simple analytical arguments based on master equation techniques as well as numerical simulations of the full von Neumann equation of the total system show that the short-time damping and decoherence behaviour of the central spin can be modelled accurately through an effective Hamiltonian involving a single effective coupling constant. The reduced short-time dynamics of the central spin is thus reproduced by an analytically solvable effective Hamiltonian model.

Coupling constantPhysicsQuantum decoherenceSpinsHamiltonian modelMarkov processCondensed Matter PhysicsAtomic and Molecular Physics and Opticssymbols.namesakeClassical mechanicsQuantum mechanicsMaster equationsymbolsHamiltonian (quantum mechanics)opens systems effective hamiltonians quantum noise non-markovian dynamicsMathematical PhysicsVon Neumann architecture
researchProduct

Spectroscopic analysis of vibronic relaxation pathways in molecular spin qubit [Ho(W5O18)2]9−: sparse spectra are key

2021

Molecular vibrations play a key role in magnetic relaxation processes of molecular spin qubits as they couple to spin states, leading to the loss of quantum information. Direct experimental determination of vibronic coupling is crucial to understand and control the spin dynamics of these nano-objects, which represent the limit of miniaturization for quantum devices. Herein, we measure the vibrational properties of the molecular spin qubit $[$Ho(W$_5$O$_{18}$)$_2]^{9-}$ by means of magneto-infrared spectroscopy. Our results allow us to unravel the vibrational decoherence pathways in combination with $ab$ $initio$ calculations including vibronic coupling. We observe field-induced spectral cha…

Coupling constantQuantum decoherenceSpin statesCondensed Matter - Mesoscale and Nanoscale PhysicsChemistryRelaxation (NMR)FOS: Physical sciences02 engineering and technologyVibració010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular physics3. Good health0104 chemical sciencesInorganic ChemistryVibronic couplingQubitMesoscale and Nanoscale Physics (cond-mat.mes-hall)CristallsPhysical and Theoretical ChemistryQuantum informationPhysics::Chemical Physics0210 nano-technologySpin-½
researchProduct

Theory for the stationary polariton response in the presence of vibrations

2019

We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal and quantum vibrations of the molecules. The latter is described within the $P(E)$ theory analogous to that used in the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from upper and lower polariton mod…

DYNAMICSQuantum decoherenceFOS: Physical sciences02 engineering and technology01 natural sciencesplasmonicsvärähtelytQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Polaritonhybrid quantum systemskvanttikemiaMOLECULE010306 general physicskvanttifysiikkaQuantumQuantum opticsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSurface plasmonCoulomb blockade021001 nanoscience & nanotechnologySurface plasmon polaritonSURFACE-PLASMON POLARITONSpintailmiötLight emission0210 nano-technologyQuantum Physics (quant-ph)ENERGY-TRANSFERpolaritonsemissio (fysiikka)
researchProduct

Orthogonality Catastrophe and Decoherence in a Trapped-Fermion Environment

2012

The Fermi edge singularity and the Anderson orthogonality catastrophe describe the universal physics which occurs when a Fermi sea is locally quenched by the sudden switching of a scattering potential, leading to a brutal disturbance of its ground state. We demonstrate that the effect can be seen in the controllable domain of ultracold trapped gases by providing an analytic description of the out-of-equilibrium response to an atomic impurity, both at zero and at finite temperature. Furthermore, we link the transient behavior of the gas to the decoherence of the impurity, and, in particular to the amount of non-markovianity of its dynamics.

DYNAMICSQuantum decoherenceSINGULARITIESCarbon nanotubesFOS: Physical sciencesGeneral Physics and AstronomyX-RAY ABSORPTIONPolaronCARBON NANOTUBESSettore FIS/03 - Fisica Della MateriaX-ray absorptionEmissionSingularityOrthogonalityQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Quantum GasesPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringPolaronsFermionKONDO PROBLEMDynamicsKondo problemMetalsPOLARONSCondensed Matter::Strongly Correlated ElectronsGravitational singularityMETALSEMISSIONSingularitiesQuantum Physics (quant-ph)Ground statePhysical Review Letters
researchProduct